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Abstract—The steady forced convection of a viscous fluid contained between two concentric spheres
which are maintained at different temperatures and rotate about a common axis with different angular
velocities is considered. Approximate solutions to the governing equations are obtained in terms of a
regular perturbation solution valid for small Reynolds numbers and a modified Galerkin solution for
moderate Reynolds numbers. The resulting flow pattern, temperature distribution, and heat-transfer
characteristics are presented for the various cases considered. The theoretical heat-transfer results for
small and moderate Reynolds number flows within a spherical annulus with a stationary outer sphere are
compared with previous experimental results for the large Reynolds number flow situation. The difference
between conduction, Stokes flow, and boundary-layer convection is shown.

NOMENCLATURE

c, specific heat;
Z ?;’ component functions for the approximate
r .
* { solutions;
h{r),
N, = truncation order for perturbation
expansion;
Ny, truncation order for K-G expansion;

P,,(6), Legendre polynomial of first kind and
degree m;
Pr,  Prandtl number = uc/x;

q(8), local wall heat-transfer rate;
Q, total heat-transfer rate;
r, radial coordinate;

R,,R,,inner and outer radius of the spheres;

Re, Reynolds number = R2w,/v;

T (r,0),fluid temperature ;

T,, T,, inner and outer temperature of the spheres;
v(r,0), velocity component.

Greek symbols
a, perturbation solution coefficients ;
{(r, #), dimensionless temperature function;
", radius ratio, R,/R,;

6, latitudinal coordinate;

K, thermal conductivity ;

i, viscosity of the fluid;

i, angular velocity ratio, w,/w, ;
v, kinematic viscosity ;

o, longitudinal coordinate ;

Y (r, 8), stream function;;
ofr, 0),angular velocity of the fluid;
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w;, @, ,angular velocity of the inner and outer
spheres;

g, reference angular velocity;

Q(r,0), angular momentum function.

Subscripts
c, conduction ;
m,n, order of component functions in
perturbation solution;
n, order of component function in K~G

solution;
r,0,¢, vector components.

Superscripts

("), physical variable;
( Y, derivative with respect to r.

1. INTRODUCTION

WE PRESENT, in these companion papers, approxi-
mate solutions to the governing equations for
steady convection in differentjally rotating spherical
annuli. This paper (Part 1) emphasizes convection in
situations where buoyancy induced motions are very
small. Part 2 discusses how these forced convection
flows are modified by the presence of a uniform,
radial body force field acting on a slightly com-
pressible fluid. These results are intended to be general
in nature and have a bearing on such studies as
geophysical flows {Greenspan [1], Israeli and Orszag
[2]) as well as providing insight into the study of
secondary flows in rotating geometries.
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Previous work concerning flow in spherical annuli
can be grouped as either (i) isothermal rotating
flows, (ii) heated non-rotating flows, or (iii) heated
rotating flows. Many investigators have considered
the isothermal flow (both spheres maintained at the
same temperature) between two spheres rotating
with different angular velocities. Among such
theoretical studies are the low Reynolds number (Re)
results of Haberman [3], Ovseenko [4], and Munson
and Joseph [5]; the almost rigid rotation results of
Proudman [6] and Stewartson [7]; and the numeri-
cal solutions of Pearson [8] and Greenspan [9].
Among the experimental isothermal spherical an-
nulus flow studies are the basic flow results of
Munson and Menguturk [10] and Sawatski and
Zierep [11], and the stability results of Wimmer
[12], Sorokin, Khlebutin and Shaidurov [13], and
Yakushin [14]. Yavorskaya and Astalyeva [15]
provide a recent review of works devoted to
isothermal spherical annulus flow.

Several investigators have considered the stability
of heated nonrotating spherical shell fluid iayers—
the spherical analog of the Bénard problem. Such
investigations include those of Chandrasekhar [16],
Joseph and Carmi [17], Busse [18], and Young [19].

Several studies concerning the combined natural
and forced convection between rotating spheres have
been carried out. These include the approximate
boundary-layer solutions given by Singh [20] for a
single sphere rotating in an infinite fluid and the low
order perturbation solution given by Bentwich [21]
for the same geometry. Experimental results for this
geometry are given by Nordlie and Kreith [22] and
Kreith, et al. [23]. Riley [24] and Riley and Mack
[25] obtained a perturbation solution, valid for small
Reynolds numbers, for the flow between two rotating
spheres of unequal temperature with the gravi-
tational field parallel to the axis of rotation.
Experimental Nusselt number vs Reynolds number
results for a rotating inner sphere and a stationary
outer sphere of different temperatures were presented
by Maples, et al. [26].

In this paper we consider the forced thermal
convection in rotating spherical annuli for moderate
values of Re in terms of a high order perturbation
solution and a modified Galerkin procedure. The
primary and secondary flow patterns, temperature
distributions, and heat-transfer characteristics are
presented for various parameter values.

2. GOVERNING EQUATIONS

The geometry for the spherical annulus flow
considered is shown in Fig. 1. A viscous incom-
pressible fluid fills the gap between the inner and
outer spheres which are of radii R, and R,, have
uniform temperatures T, and T, and rotate about a
common axis with constant angular velocities ,
and w,, respectively. Viscous dissipation is neglected
and all fluid properties are assumed constant.
Secondary flows in the meridian plane drive the
forced convection.
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F1G. 1. The flow geometry.

Since the flow is assumed to be independent of the
longitude, ¢, the dimensionless Navier-Stokes equa-
tions and energy equation can be written in terms of
a stream function in the meridian plane, ¥, an
angular momentum function, , and a temperature
function, {, as follows (Douglass [27]):

. Re - 3(Shy)
D= a6 @
~;,,  Re 2 3(—rsinf,Q)
DY =1 sine{rsin(}[g o, 0)
. d(—rsinb,y) a(ﬁ%p,w)}
DY =36 } 5.0 @
and
RePr 8((,¥)
Vi = r2sinf a(r,0)’ 3
where

D? = 8%/ar* 4+ r~2(8%/00* —cot 0 6/08),

B* = BB,
and V? is the Laplacian operator in spherical
coordinates. Jacobian notation for the derivatives
has been used. For example,

3(4,B) 04 0B 0A OB

Hr,0)  or 96 08 or’

Various dimensionless groups arise from the
nondimensionalization of the governing equations.
The nondimensionalization employs R,, wg!, and
(I,—T,) as the characteristic length, time and
temperature scales. Among the dimensionless groups
are the radius ratio y = R,/R,, the angular velocity
ratio ji = w,/w,, the Reynolds number, and the
Prandt! number. The Reynolds number is defined as
Re = woRZ/v. In general, wy = w,, but if the outer
sphere is stationary, then w,= ;. The Prandtl
number appearing in the energy equation (3) is Pr
= uc/x, where u is the dynamic viscosify, ¢ the
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specific heat capacity of the fluid, and x its thermal
conductivity.

The flow is assumed to be symmetric with respect
to the equator so that the range of independent
variablesisn <r <1and 0 <6 < n/2.

The actual physical variables are obtained from

. /00
b= 2% 7 6ne

. oy /for

By = —szom 4)
b= Ravo g

T=(L-T)(+T,.
The angular velocity of the primary flow about the
axis of rotation is given by & = wo[€¥/(r?sin?0)], or
in dimensionless form by w = Q/(r?sin?6).
The boundary conditions which complete the
formulation of the problem are as follows:

W=%l/ri=0 on r=n, 1,
{=0 on r=1n, {=1 on r=1

and either
Q=7n%sin20 on r=9 and Q=jisin?f on r=1

if @, is the characteristic angular velocity (0w, = ®,)
or

2
=%sin26 on r=n and Q=sin?f on r=1

if w, is the characteristic angular velocity.

3. SOLUTION METHODS

Exact solutions of the equations governing the
thermal convection in a rotating spherical annulus
(equations 1-3) are as yet impossible to obtain.
Solutions of these coupled, non-linear equations
represent a wide variety of flow phenomena. It is
possible, depending upon the values of the various
parameters involved, to have any type of flow from
creeping motion to boundary-layer flow (thermal
and momentum). Two approximate methods of
solution are used here to obtain laminar flow
solutions. The first method is a regular perturbation
technique valid for sufficiently small values of the
Reynolds number. The second method s
Kantorovich’s modification of the well-known Galer-
kin technique, also known as a partial spectral
expansion method. It provides solutions valid for
Reynolds numbers larger than those of the per-
turbation technique.

As in the isothermal flow situation reported by
Munson and Joseph [5], the small Re perturbation
solution of equations (1)-(3) can be written in the
form

N n
¥(r.0)= ;0 Re =123 mn(r)sin® 6P, (0),

Qr,0)= i Re" i Son(r)sin2 6P (), 6)
n=0 m=0,2
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and

»n

N
{(rn8)= Z:o Re" Zz

houn(r) Ppo(0),

where P, (0) is the mth-order Legendre polynomial
of the first kind. The 8 dependence of ¥, Q, and {
separates from the r dependence for this perturbation
solution and allows the governing equations to be
written as a system of linear, inhomogeneous
ordinary differential equations for the component
functions f,,,(r), g..(r), and h,,(r). Only N terms in
the expansions are included, introducing the approxi-
mation to the exact solutions. N is equal to 4 for
the results presented here.

These equations for the various component func-
tions can be solved successively with the solution
written in the following general form:

®,,(r) = Y alr (Inry. ™
LJ
Here, a represents an array of coefficients for the
appropriate f, g, or h function. These coefficients are
given in terms of the various parameters involved (y, /i,
and Pr).

Due to the uncoupling of the momentum and
energy equations in forced convection flows, the f,,
and g,, functions are the same for this forced
convection problem as they are for the isothermal
flow [5]. A detailed account of the solution method
and a listing of the numerous « coefficients (through
terms of order Re*) can be found in Douglass [27].
It is noted that a solution consisting of fy, g,,, and
hoo represents a very small Reynolds number
primary flow with its relatively small secondary flow
and a conduction temperature profile, respectively.
For larger Reynolds number flows, more terms in the
expansion must be included in order to obtain valid
solutions.

For still larger values of Re, an approximate
solution of the governing equations can be obtained
by a Kantorovich-Galerkin (K-G) method [28].
The dependent variables are expanded in a truncated
series as follows:

Qr.0)= E sin2 6P, (0) 1, (r),
n=0

Nt
Y(r,0) = Y sin?6P,(0)g,(r), ®)
n=0
and
Nr
{(r,0) = ) P,(O)h,(r).
=0
The non-linear ordinary differential equations

governing the component functions f,(r), g,(r), and
h,(r) are obtained by substituting this series repre-
sentation for €, y, and { into the governing
equations (1)—(3) and applying appropriate orthogo-
nality conditions. The technique is similar to that
used by Munson and Joseph [5] for the isothermal
flow in a spherical annulus. Note that the expansion
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utilizes Legendre polynomials as the eigenfunctions.
This choice was made because of their “infinite”
accuracy properties as shown by Orszag [29]. Note
that here, N, is 4. Details of the solution method
may be found in Douglass [27] and are illustrated in
Shaughnessy, et al. [30].

The solution to the resulting non-linear two-point
boundary-value problem governing the component
functions f,. g,. and h, was obtained by numeri-
cal methods. A quasilinearization (or Newton—
Raphson-Kantorovich iteration) method (Radbill and
McCue [31]) proved to be quite acceptable. It is noted
that the perturbation solutions described above are
actually a solution of the linearized K-G equations.
These perturbation solutions provide a convenient
initial solution necessary to start the numerical
iteration of the quasilinearization method.

The two approximate solution methods described
above were used previously in determining the flow
between two rotating spheres of equal temperature
{Munson and Joseph [5]). It was found for this
isothermal situation that solutions could be gener-
ated by the K-G method for Reynolds numbers
considerably larger than obtainable by the per-
turbation method. For example, with # = 0.5 and #
= 0, the K—G solution was found to remain valid for
Re ~ 1000 based on comparison of the K-G
solution with previously reported finite difference
solutions of the partial differential equations (Pear-
son [8]), whereas the high order perturbation
solution was found to be valid only for Re < 50.
Comparison of experimental results with the K-G
solutions is also excellent (Munson and Menguturk
[107]). It is not possible to compare our approximate
forced convection solutions with previous finite
difference solutions since none are available. Based
on the above comments, however, we have no reason
to doubt that for the range of parameters presented
here (Re < 200, Pr < 100), the approximate sol-
utions given are accurate.

4. DISCUSSION OF PERTURBATION SOLUTIONS

In this section we consider some of the properties
of the steady forced convection flow of a viscous
incompressible fluid in a spherical annulus. The
solutions to the governing equations were obtained
by the perturbation method discussed in the previous
section.

If the bounding spherical surfaces were stationary,
there would be no fluid motion and the temperature
distribution would simply be the conduction distri-
bution. Any rotation of the bounding spheres sets up
a primary flow (@) around the axis of rotation. If the
spheres do not rotate at equal rates (4 # 1), the
relative motion sets up an unbalanced centrifugal
force field which drives the secondary flows (¥) in
the meridian plane. Thus, if the bounding sphéres are
of unequal temperatures, this secondary flow pro-
duces forced convection within the annulus, resulting
in a temperature distribution ({) that is different than
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F1G. 2. Velocity and temperature distoibutions for j = — 1,
7=05 Re=w,Ri/v=10 and Pr=10: (a) secondary
flow; (b} primary flow and angular velocity; (c) tempera-
ture distribution; (d) difference between convective and
conduction temperature distributions.
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the pure conduction distribution. The relative magni-
tudes of the secondary flow and forced convection
effects depend upon the parameters involved, includ-
ing those concerning the geometry of the flow,  and
/i, and those concerning the dynamics, Re and Pr.

A typical situation is shown in Fig. 2 for the case
when 4 = 0.5, i = —1, Re =10, and Pr = 10. That
is, the inner sphere has a diameter one half that of
the outer sphere, and the spheres are rotating at the
same angular velocity but in opposite directions.
Terms through order Re* were included for this
perturbation solution. It is seen that for Re = 10,
inertial forces are not large. For example, the
secondary flow in the meridian plane (Fig. 2a) is
quite weak (maximum value of ¥ is approximately
80 x 1075). The clockwise motion of the secondary
flow indicates that the outer sphere is dominant as
far as the secondary flow is concerned. The contours
of constant angular velocity, o (Fig. 2b), are nearly
spherical shells. Hence, the secondary flow has not
altered the primary flow to any noticeable degree.
Likewise, the contours of constant temperature,
(Fig. 2c), are nearly spherical shells indicating that
the secondary flow has caused only slight convective
effects.

This effect of the secondary flow on the tempera-
ture distribution is shown by the {—{, contours of
Fig. 2(d). Here {, is the conduction temperature
distribution, dependent only upon r. The difference
between the actual and conduction distribution is
dependent upon the magnitude of the secondary flow
velocity (Re) and the rate of thermal diffusion (Pr).
Consider the situation for which T, > T, ; that is, the
outer sphere is hotter than the inner sphere. As
shown in Fig. 2(a), the hot fluid near the outer sphere
is convected toward the cooler inner sphere in the
region near the equator, while the cool fluid near the
inner sphere is convected toward the hotter outer
sphere near the pole. Regions of warm and cool fluid
then are formed in the equatorial and polar regions,
respectively.

For relatively small values of Re and Pr, the forced
convection temperature distribution is not greatly
different than the conduction solution. For this case
with Re = 10 and Pr = 10, the maximum difference
is approximately 2.5%. From the perturbation
solution, it can be shown that for small values of Re
the difference between the convection and con-
duction temperature profile is proportional to Re?Pr.
For small Re, the “[—{ = 0"line separating the
regions of { greater than or less than the conduction
value is given by P,(6) = 0, that is 8 = 54.7°.

The local rate of heat transfer across the bounding
spherical surface is dependent upon the temperature
gradient at the surface and may be written as

R oT
§= k. ©)

This local heat flux may be put into dimensionless
form by dividing the actual heat flux by the
conduction heat flux value, §,, which is independent
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of 8. Use of the perturbation solution given by
equation (6) results in the following heat-transfer
ratio

4(0) _ at/or
4!.‘ dCc/dr r=u,1

= 1+——,1 [ ¥ iRe’”Pp(B)h’Pm(r)}
r=un,1

00(’) m=2,4,..p=0

(10)

where r = #,1 denotes the value of the ratio at the
inner or outer sphere, respectively. This local transfer
ratio is a function of 6 alone. The total heat transfer
ratio, /0., is obtained by integrating the local heat-
transfer ratio over the surface of the bounding
sphere. The resulting expression can be written as

0 1
& i

00{r) | m= 2,4,...

Re"'h;,,,,(r)] . (1)

r=n
Here (/0. is the ratio of total heat transfer across
the rotating spheres (forced convection) divided by
that heat transfer for stationary spheres
(conduction).

For small Re the local and total heat transfer
ratios given above reduce to the following:

él= 1+ aRe*Pr(3cos?f—1) (12)
and
Q _ 4p.2
5 1+ ARe*Pr?, (13)

where a and A are quantities dependent only upon 5
and j. Thus, the lowest order local heat-transfer
convective effects are of the order Re?Pr, whereas the
total heat-transfer convection effects are of the order
(Re*Pr)?. Thatis, when the 6-dependence of the local
heat-transfer rate is integrated to form the total heat-
transfer rate, the lowest order Re?Pr term vanishes
leaving the Re*Pr? term as the lowest order
correction to the total heat-transfer rate. These
characteristics are also shown by the K-G solution
and discussed in the next section. Values of A(n, ji)
are shown in Fig. 3 for two limiting cases; g = 0 and
oo. Since A is an index of the effect of convection on
the total heat-transfer rate, this figure points out that
n ~ 0.35 is the optimum radius ratio. Further, the
total heat-transfer rate drops off sharply for values of
n approaching 0 or 1.

The Re* dependence of 0/, —~1 shows that the
forced convection effect for the overall heat-transfer
rate is very small for small Reynolds number
spherical annulus flows. That this is so is a result, in
part, of the fact that the mechanism causing the
forced convection is the secondary flow, which is
relatively small for small Re. This is in contrast to a
situation in which the primary flow is directly
responsible for the forced convection. A heated
sphere placed in a uniform stream of fluid is such an
example. For this case it can be shown (Rimmer
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FI1G. 3. The dependence of the total heat-transfer rate index
on the radius and angular velocity ratios. (——) ji = oo,
() i =0.

[32]) that the Jowest order correction to the total
heat-transfer ratio is proportional to RePr.

S, DISCUSSION OF K-G SOLUTIONS

The K~G solution method discussed in Section 3
allows the forced convection solution to. be obtained
at Reynolds numbers larger than those permitted by
the perturbation solution. For small Re, solutions
obtained by the two methods agree to within several
significant figures. In this section we discuss the
solutions at larger Reynolds numbers than those
aliowed by the perturbation technique.

A typical situation is shown in Fig. 4 for the case
where n = 0.5, i = 0 (the stationary outer sphere is
twice the diameter of the inner one), Re = 200, and
Pr = 1. Rotation of the inner sphere produces a
centrifugal force field that drives the counter-
clockwise secondary flow as indicated in Fig. 4a.
This outwardly centrifuging secondary flow near the
equator interacts with the primary flow producing
lines of constant angular velocity (Fig. 4b) that are
different than the small Re, spherical shell structure.
The shape of the constant temperature lines is
likewise distorted from their spherical shell con-
duction condition as shown in Fig. 4(c). That these w
and { contours are very similar is not surprising
since the distortion of each is dependent upon the
relative amount of convection and conduction
(thermal or momentum). For Pr = 1, the equations
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FIG. 5. Local heat transfer ratios at the spherical surfaces for ji = 0,7 = 0.5, Re = w;R}/v =200 and Pr = 1.

governing the basic flow momentum function (Q)
and the temperature function ({) are nearly identical.
Recall that @ = Q/r?sin?f. The difference between
the convection and conduction temperature distri-
butions, {—(,, is shown in Fig. 4(d). The maximum
difference is on the order of 15%;. Thus, for example,
if the outer sphere were hotter than the inner sphere,
a region of relatively hot fluid is obtained in the
region near the poles, while a region of relatively
cool fluid is obtained near the equator. An equal but
opposite effect is obtained for the situation where the in-
ner sphere is hotter than the outer one. ({ —{_) remains
the same but T— T, changes sign [cf. equation (4)].
T. is the dimensional conduction temperature distri-
bution. For larger values of Re, the line separating
these two regions is no longer a straight line as it was
for the low order perturbation solution. The larger
secondary flows produce stronger convective effects
with more severe distortions of the temperature
profile.

The heat-transfer characteristics of the larger
Reynolds number K—-G solutions can be obtained in
a manner analogous to that described in the
previous section for the perturbation solutions. In
particular, the local and total heat-transfer ratios can
be written as

q b (1)
e = P,(0)+ 14
qc n,1 m=ZZ,... ( )hOO(r) r=u,1 ( )
and
0 _ k()
= = 15
Qc ’00(1') r=x.1 ( )

where hy, is the conduction temperature function
(from the perturbation solution). The local heat-
transfer ratio for the flow shown in Fig. 4 and
discussed above is shown in Fig. 5. As expected, the
heat-transfer rate on the inner sphere (r=4) is
maximum near the poles and minimum near the
equator, whereas the opposite is true for the outer
sphere. Thus, regardless of which sphere is hotter, the
counterclockwise secondary flow causes the in-
creased or decreased local heat-transfer rate as
shown.

The overall heat-transfer rate, ¢/0,—1, is shown
as a function of Reynolds number for g = 0 in Fig. 6.
Results from the perturbation solution, the K-G
solution, and experiments are shown. As discussed in
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F1G. 6. Total heat-transfer ratio as a function of Reynolds

number for g =0, n = 0.5: — perturbation solution with

Pr=10: O K-G solution with Pr=10; —— per-

turbation solution with Pr = 0.72; [0 experimental results

with negligible buoyancy and Pr=0.72 (Maples, et al.
[26]).

the previous section, for small Re the convection
eflects are of order Re*. Hence, 0/0.—1 becomes
small very rapidly as the Reynolds number is
decreased below Re ~ 100 or so. The K-G solutions
also show this type of Reynolds number dependence
for small Re, while the dependence is not as strong
for larger Re (see Fig. 6 for Re = 200).

The large Reynolds number experimental results
of Maples, et al. [26] are shown on the same figure.
These results were obtained by heat-transfer
measurements within a spherical annulus with a
stationary outer sphere (i = 0) oriented with the axis
of rotation vertical. Hence, vertical buoyancy effects
are present for the experiments but not for the
theoretical results. However, for the data shown, the
natural convection effects are very slight since the
buoyancy parameter, Gr/Re®> (where Gr is the
Grashof number) is on the order of 0.33. The
experimental results are for air with Pr = 0.72 rather
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FiG. 7. Velocity and temperature distributions for g = oc,
n =0.5,Re = w,R%/v =200 and Pr = 1.
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F1G. 8. Local heat-transfer ratios at the spherical surfaces
for i = o0, n = 0.5, Re = w,R3/v = 200 and Pr = 1.

than Pr =1 as calculated here. The theoretical low
Re heat-transfer results for air are shown in the same
figure.

The results for n = 0.5, fi = oo (stationary inner
sphere), Re = 200, and Pr =1 are shown in Fig. 7.
As reported previously ([5], [8], etc.), the centrifugal
forces produce a clockwise secondary flow (Fig. 7a),
and the angular velocity contours (Fig. 7b) show a
typical cylindrical characteristic. That is, surfaces of
constant o are somewhat cylindrical in character as
opposed to their low Re spherical character. Not
surprisingly, the constant temperature contours (Fig.
7c) show a similar tendency toward a cylindrical
characteristic.

As shown in Fig. 7(d), near the poles the difference

between the forced convection and the conduction
temperature distribution reaches a maximum of
slightly more than 25%,. This situation is similar to
that in Fig. 4 and only here the regions of hot and
cool fluid are interchanged. Again, the opposite effect
is obtained if the inner sphere is hotter.

The local heat-transfer ratio on the bounding
spheres is shown in Fig. 8. While the heat-transfer
rate is not greatly different than the conduction value
in the equatorial region (45° <6 < 90°), it is con-
siderably different in the polar region, particularly on
the outer sphere. The total heat-transfer ratio is
shown as a function of Reynolds number in Fig. 9.

As a final example, we consider the situation with
n = 0.5, ji = —1/3 (inner sphere rotating three times
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F1G. 9. Total heat-transfer ratio as a function of Reynolds

number for 5 = 0.5: (a) i = o0, Pr=1.0, perturbation

solution, O K-G solution; (b) i = —4%, Pr=100, —
perturbation sotution, A K-G solution.

that of the outer sphere and in the opposite
direction), Re = 50, and Pr = 10. As shown in Fig.
10(a), neither of the spheres completely dominates
the secondary flow. Two contrarotating swirls are
obtained. Due to the relatively small Reynolds
number, the contours of constant angular velocity
(Fig. 10b) are essentially spherical surfaces. On the
other hand, the relatively large Prandtl number
causes a considerable distortion of the temperature
profile (Fig. 10c). Surfaces of constant { remain quite
spherical near the equator but are flattened con-
siderably near the poles. Contours of constant {—{.
are shown in Fig. 10(d). The total heat-transfer ratio
results are included in Fig. 9. As the Reynolds
number is increased, the deviation of the total heat-
transfer ratio from the Re* low Reynolds number
dependence is clearly demonstrated for both sets of
data shown.

6. CONCLUSIONS

The forced convection within a rotating spherical
annulus has been investigated by obtaining approxi-
mate solutions to the governing momentum and
energy equations. The character of the velocity and
temperature fields and the heat-transfer rates are
strongly dependent upon the values of the various
dimensionless parameters considered. For many
cases the characteristics of the angular velocity and
temperature distributions are quite similar. This is
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not unexpected since these distributions represent a
balance between convection and conduction of
momentum and heat, respectively. The results pre-
sented are for a radius ratio of one-half ( = 0.5).
Similar characteristics are expected for other radius
ratios, at least for values of # not too near zero or
one.

The secondary flows that drive the forced con-
vection become vanishingly small as Re — 0. Thus,
convective effects are quite weak for small Reynolds
numbers, producing local heat-transfer ratios that do
not differ considerably from the conduction value for
small Re. This, coupled with the fact that on either
sphere the local heat-transfer rate varies from greater
than to less than the conduction value from the pole
to the equator, results in an overall heat transfer rate
that varies according to Re*Pr? for small Re. For
larger values of Re, this Reynolds number de-
pendence becomes less severe.
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CONVECTION THERMIQUE DANS DES ESPACES ANNULAIRES
SPHERIQUES—2. ECOULEMENTS STRATIFIES

Résumé—On considére 1a convection thermique mixte stationnaire d’un fluide de Boussinesq entre deux
sphéres concentriques. Les sphéres sont maintenues a des températures différentes et tournent autour d’un
axe commun avec des vitesses angulaires différentes. Un champ gravitationel, radial, uniforme agit sur le
fluide. Des solutions approchées des équations sont obtenues par une méthode de Galerkin n}odlﬁée pour
les nombres de Reynolds modérés. Les configurations d’écoulement, de distribution de température et les
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caractéristiques de transfert thermique et de couple sont présentées pour plusieurs degrés de stratification.

On constate que l'accroissement des forces de gravité altére les configurations d’écoulement primaire et

secondaire aussi bien que les distributions de température. Les valeurs de transfert thermique et du
couple sont augmentées en conséquence.

THERMISCHE KONVEKTION IN ROTIERENDEN KUGELFORMIGEN
RINGRAUMEN—I. ERZWUNGENE KONVEKTION

Zusammenfassung—Die stationdre erzwungene Konvektion in einer zwischen zwei konzentrischen
Kugeln eingeschlossenen zihen Fliissigkeit wird untersucht. Die Kugeln werden auf unterschiedlichen
Temperaturen gehalten und rotieren bei unterschiedlicher Winkelgeschwindigkeit um eine gemeinsame
Achse. Fiir die maBigebenden Gleichungen wurden Niherungslosungen gefunden, und zwar fiir kleine
Reynolds—Zahlen in Form einer Losung mittels Stérungsansatzes und fiir méaBige Reynolds—Zahlen in
Form eciner modifizierten Galerkin—-Lésung. Fiir die verschiedenen betrachteten Fille werden als
Ergebnis das Stromlinienbild, die Temperaturverteilung und das Wiarmeiibertragungsverhalten darges-
tellt. Die theoretisch gewonnenen Wirmeiibergangzahlen fir Stromungen in einem kugelformigen
Ringraum bei kleinen und mittleren Reynolds—Zahlen und ruhender AuBenkugel werden mit fritheren
Versuchsergebnissen fiir Strémungsverhiltnisse bei groBen Reynolds-Zahlen verglichen. Der Unterschied
zwischen reiner Leitung, “Stokes—Strémung” und Grenzschicht—Konvektion wird gezeigt.

TEMMTOBASA KOHBEKLIMA B 3A30PE MEXY BPAUIAIOWMMUCA COEPAMMU.
YACTb 1. BhIHYXKJEHHAS KOHBEKLIUA

Annotammst — PaccMaTpHBAETCs CTAaUMOHADHAR BLIHYXKACHHAs KOHBEKLUMS BA3KOH XUIKOCTH B
3330p€ MEXAY ABYMSA KOHUEHTPHYECKUMH cepaMu, KOTOPbie HAXOAATCA NPU PA3NTUUHLIX Temrepa-
Typax W BpAWAIOTCA C DPa3IHYHLIMM YIJIOBBIMH CKOPOCTAMHM BOKpYr QOuei ocu. TMonyuennt
NpubJHKEHHBIE PEIEHNA MCXOLHBIX YPABHEHHH C NOMOLUBIO METOMAA PETYAAPHbLIX BO3MYILEHHH
LA ManbiX 3Hau€HHHA wucna Pelinoabaca u nocpeacTsoM MoanduuuposaHHoro Meroaa Fanépkuna
[N% CPEAHMX 3HAueHui yucaa Peifnonbaca. Jna paccMaTpUBaeMbiX Clyvyaes NPUBOAATCA KapTHHA
TEYEHHSA, PACNIPECACNICHHE TEMMEPATYD M XAPAKTEPHCTHKH TersoobmMeHa. [Ins cliyvan HemoaswxHo#
BHEWHeH cepbl TEOPETHYECKHE Pe3ybTaThl M0 TENNOOOMEHY A4S TeYeHUi, XapaKTepu3yIOWHXCA
ManbiMH H CPEAHHMM 3HAYEHUSIMH 4HcCna PelHOMbOCA, CPAaBHHUBAIOTCA C PaHee MNOJYYEHHbIMH
IKCTIEPUMEHTAIbHLIMM NAHHBIMH ANA TeYeH Ui ¢ Gonbutum yuciaom PeltHonsaca. MokasaHo pazauuue
MEX Y PEXXHMAMH TENMNONPOBOMHOCTH, CTOKCOBCKOTO TEYEHHS W KOHBEKLUHMH B MOTPAHMYHOM CJIOE.
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