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Abslract-The steady forced convection of a viscous fluid contained between two concentric spheres 
which are maintained at different temperatures and rotate about a common axis with different angular 
velocities is considered. Approximate solutions to the governing equations are obtained in terms of a 
regular perturbation solution valid for small Reynolds numbers and a modified Gale&in solution for 
moderate Reynolds numbers. The resulting flow pattern, temperature distribution, and heat-transfer 
characteristics are presented for the various cases considered. The theoretical heat-transfer results for 
small and moderate Reynolds number flows within a spherical annulus with a stationary outer sphere are 
compared with previous experimental results for the large Reynolds number flow situation. The difference 

between conduction, Stokes flow, and boundary-layer convection is shown. 

NOMENCLATURE 

specific heat ; 

component functions for the approximate 

solutions; 

truncation order for perturbation 
expansion ; 

NT, truncation order for K-G expansion; 
P,(B), Legendre polynomial of first kind and 

degree m; 

Pr, Prandtl number = PC/K ; 
q(O), local wall heat-transfer rate; 

Q9 total heat-transfer rate; 

r, radial coordinate ; 
R,, R,, inner and outer radius of the spheres ; 

Re, Reynolds number = R&,/v; 

T(r, O), fluid temperature ; 

ol, w,,angular velocity of the inner and outer 
spheres ; 

*ot reference angular velocity ; 
O(r,e), angular momentum function. 

Subscripts 

c, conduction ; 
m n, order of component functions in 

perturbation solution; 

n, order of component function in K-G 

solution; 
r,0,4, vector components. 

Superscripts 

[ * i: physical variable ; 
, derivative with respect to r. 

T,, 7”, inner and outer temperature of the spheres ; 
u(r, O), velocity component. 1. INTRODUCTION 

Greek symbols 

a, perturbation solution coefficients ; 
[(r, O), dimensionless temperature function ; 

% radius ratio, RI/R2 ; 
0, latitudinal coordinate ; 
6 thermal conductivity; 

/4 viscosity of the fluid; 

/4 angular velocity ratio, C&B, ; 

;, 
kinematic viscosity; 
longitudinal coordinate; 

tj(r, e), stream function ; 
w(r, @,angular velocity of the fluid; 

WE PRESENT, in these companion papers, approxi- 

mate solutions to the governing equations for 
steady convection in differentially rotating spherical 
annuli. This paper (Part 1) emphasizes convection in 
situations where buoyancy induced motions are very 
small. Part 2 discusses how these forced convection 
flows are modified by the presence of a uniform, 
radial body force field acting on a slightly com- 
pressible fluid. These results are intended to be general 
in nature and have a bearing on such studies as 
geophysical flows TGreenspan [l], Israeli and Orszag 
[2]) as well as providing insight into the study of 
secondary flows in rotating geometries. 
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Previous work concerning flow in spherical annuh 
can be grouped as either (i) isothermal rotating 
flows, (ii) heated non-rotating flows, or (iii) heated 
rotating flows. Many investigators have considered 
the isothermal flow (both spheres maintained at the 
same tem~rature) between two spheres rotating 
with different angular velocities. Among such 
theoretical studies are the low Reynolds number (Re) 
results of Haberman [3], Ovseenko [4], and Munson 
and Joseph [5] ; the almost rigid rotation results of 
Proudman [6] and Stewartson [7] ; and the numeri- 
cal solutions of Pearson [8] and Greenspan [9]. 
Among the experimental isothermal spherical an- 
nulus flow studies are the basic flow results of 
Munson and Menguturk [lo] and Sawatski and 
Zierep [ll], and the stability results of Wimmer 
[12], Sorokin, Khlebutin and Shaidurov [13], and 
Yakushin [14]. Yavorskaya and Astafyeva [15] 
provide a recent review of works devoted to 
isothermal spherical annulus flow. 

Several investigators have considered the stability 
of heated nonrotating spherical shell fluid layers- 
the spherical analog of the 36nard problem. Such 
investigations include those of Chandrasekhar [16], 
Joseph and Carmi [17], Busse [18], and Young [19J. 

Several studies concerning the combined natural 
and forced convection between rotating spheres have 
been carried out. These include the approximate 
boundary-layer solutions given by Singh [20] for a 
single sphere rotating in an infinite fluid and the low 
order ~rturbation solution given by Bentwich [21] 
for the same geometry. Experimenta results for this 
geometry are given by Nordlie and Kreith [22] and 
Kreith, et al. [23]. Riley [24] and Riley and Mack 
[25J obtained a perturbation solution, valid for small 
Reynolds numbers, for the flow between two rotating 
spheres of unequal tem~rature with the gravi- 
tational field parallel to the axis of rotation. 
Experimental Nusselt number vs Reynolds number 
results for a rotating inner sphere and a stationary 
outer sphere of different temperatures were presented 
by Maples, et al. [26]. 

In this paper we consider the forced thermal 
convection in rotating spherical annuli for moderate 
values of Re in terms of a high order perturbation 
solution and a modified Galerkin procedure. The 
primary and secondary flow patterns, temperature 
distributions, and heat-transfer characteristics are 
presented for various parameter values. 

2. GOVERNING EQUATIONS 

The geometry for the spherical annulus flow 
considered is shown in Fig. 1. A viscous incom- 
pressible fluid fills the gap between the inner and 
outer spheres which are of radii RI and R,, have 
uniform temperatures Ti and T2, and rotate about a 
common axis with constant angular velocities o1 
and w2, respectively. Viscous dissipation is neglected 
and all fluid properties are assumed constant. 
Secondary flows in the meridian plane drive the 
forced convection. 

FIG. 1. The flow geometry. 

Since the flow is assumed to be independent of the 
longitude, Cp, the dimensionless Navier-Stokes equa- 
tions and energy equation can be written in terms of 
a stream function in the meridian plane, rl/, an 
anguiar moments fiction, Q, and a t~~rat~e 
function, [, as follows (Douglass [27J): 

2 
jj4&!5_ - 

i [ 
r*sin# rsinB 

~~(-rsin~,~) 

afr, 0) 

(1) 

(2) 

(3) 

where 

and V* is the Laplacian operator in spherical 
coordinates. Jacobian notation for the derivatives 
has been used. For example, 

~(A,B) aA aB a.4 as _=_---- 
ah-9 @ aF a6 a@ aF 

Various dimensionless groups arise from the 
nondimensionahzation of the governing equations. 
The nondimensionalization employs R2, co;‘. and 
(T2- T1) as the characteristic length, time and 
temperature scales. Among the dimensionless groups 
are the radius ratio n = RJR,, the angular velocity 
ratio /J = w&+ the Reynolds number, and the 
Prandtl number. The Reynolds number is defined as 
Re = o,R~/v. In general, w,, = 02, but if the outer 
sphere is stationary, then w0 = wi. The Prandtl 
number appearing in the energy equation (3) is Pr 
= pqk, where p is the dynamic viscosity, c the 
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specific heat capacity of the fluid, and K its thermal 
conductivity. 

The flow is assumed to be symmetric with respect 
to the equator so that the range of independent 
variables is r~ < I i 1 and 0 < 8 < x/2. 

The actual physical variables are obtained from 

awar 6, = -R,w,- 
rsin8 

n 
i$ = R,w, - 

r sin 0 

n=O m=0.2.... 

where P,,,(e) is the mth-order Legendre polynomial 
of the first kind. The 0 dependence of $, R, and I 
separates from the r dependence for this perturbation 
solution and allows the governing equations to be 
written as a system of linear, inhomogeneous 
ordinary differential equations for the component 
functions fmn(r), g,.(r), and h,,,,,(r). Only N terms in 
the expansions are included, introducing the approxi- 
mation to the exact solutions. N is equal to 4 for 
the results presented here. 

The angular velocity of the primary flow about the 
axis of rotation is given by & = o,[Q/(r2 sin2 e)], or 
in dimensionless form by w = Q/(r2 sin2 0). 

These equations for the various component func- 
tions can be solved successively with the solution 
written in the following general form: 

The boundary conditions which complete the 
formulation of the problem are as follows: 

mm”(r) = 1 a&r’(ln ry’. 
i,j 

w J/=-=0 on r=q, 1, 
ar 

t;=O on r=q, [=l on r=l 

and either 

n=n2sin28 on r=q and R=fisin26 on r=l 

if wi is the characteristic angular velocity (o,, = oi) 
or 

Q=$sin2tJ on r=q and R=sin2B on r=l 

if o2 is the characteristic angular velocity. 

3. SOLUTION METHODS 

Exact solutions of the equations governing the 
thermal convection in a rotating spherical annulus 
(equations l-3) are as yet impossible to obtain. 
Solutions of these coupled, non-linear equations 
represent a wide variety of flow phenomena. It is 
possible, depending upon the values of the various 
parameters involved, to have any type of flow from 
creeping motion to boundary-layer flow (thermal 
and momentum). Two approximate methods of 
solution are used here to obtain laminar flow 
solutions. The first method is a regular perturbation 
technique valid for sufficiently small values of the 
Reynolds number. The second method is 
Kantorovich’s modification of the well-known Galer- 
kin technique, also known as a partial spectral 
expansion method. It provides solutions valid for 
Reynolds numbers larger than those of the per- 
turbation technique. 

As in the isothermal flow situation reported by 
Munson and Joseph [S], the small Re perturbation 
solution of equations (l)-(3) can be written in the 
form 

f: fm(r)sin2 w,(e), 
m=0.2,... 

(6) 

and 

(7) 

Here, u represents an array of coefficients for the 
appropriate f, g, or h function. These coefficients are 
given in terms of the various parameters involved (n, jI, 
and Pr). 

Due to the uncoupling of the momentum and 
energy equations in forced convection flows, the f,. 

and gm. functions are the same for this forced 
convection problem as they are for the isothermal 
flow [SJ. A detailed account of the solution method 
and a listing of the numerous a coefficients (through 
terms of order Re4) can be found in Douglass [27]. 
It is noted that a solution consisting of foot g, r, and 
h represents a very small Reynolds number 
p%ary flow with its relatively small secondary flow 
and a conduction temperature profile, respectively. 
For larger Reynolds number flows, more terms in the 
expansion must be included in order to obtain valid 
solutions. 

For still larger values of Re, an approximate 
solution of the governing equations can be obtained 
by a Kantorovich-Gale&in (K-G) method [28]. 
The dependent variables are expanded in a truncated 
series as follows: 

and 

Q(r, 0) = “z. sin2 @p,(@f.(r), 

$(r, e) = 2 sin2 BP&J)g,(r), 
n=o 

(8) 

i(r, 0) = z WW,(r). 

The non-linear ordinary differential equations 
governing the component functions f.(r), g,(r), and 
h,(r) are obtained by substituting this series repre- 
sentation for Q, $, and c into the governing 
equations (l)-(3) and applying appropriate orthogo- 
nality conditions. The technique is similar to that 
used by Munson and Joseph [S] for the isothermal 
flow in a spherical annulus. Note that the expansion 
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utiIizes Legendre polynomials as the eigenfunctions. 
This choice was made because of their “infirnte” 
accuracy properties as shown by Orszag [29]. Note 
that here, N, is 4. Details of the solution method 
may be found in Douglass [27] and are illustrated in 
Shaughnessy, et al. [30]. 

The solution to the resulting non-linear two-point 
boundary-value problem governing the component 
functions f,, gn, and la, was obtained by numeri- 
cal methods. A quasilineari~tion (or Newton- 
Raphson-Kantorovich iteration) method (Radbill and 
McCue [31]) proved to be quite acceptable. It is noted 
that the perturbation solutions described above are 
actually a solution of the linearized K-G equations. 
These perturbation solutions provide a convenient 
initial solution necessary to start the numerical 
iteration of the quasilinearization method. 

The two approximate solution methods described 
above were used previously in determining the flow 
between two rotating spheres of equal temperature 
(Munson and Joseph [5]). It was found for this 
isothermal situation that solutions could he gener-’ 
ated by the K-G method for Reynolds numbers 
considerably larger than obtainable by the per- 
turbation method. For example, with 4 = 0.5 and j? 
= 0, the K-G solution was found to remain valid for 
Re N 1000 based on comparison of the K-G 
solution with previously reported finite difference 
solutions of the partial differential equations (Pear- 
son [S]), whereas the high order ~rturbation 
solution was found to be valid only for Re < 50. 
Comparison of experimental results with the K-G 
solutions is also excellent (Munson and Menguturk 
[lo]). It is not possible to compare our approximate 
forced convection solutions with previous finite 
difference solutions since none are available, Based 
on the above comments, however, we have no reason 
to doubt that for the range of parameters. presented 
here (Re < 200, Pr < loo), the approximate sol- 
utions given are accurate. 

4. DISCUSSION OF PERTURBATION SOLUTIONS 

In this section we consider some of the properties 
of the steady forced convection flow of a viscous 
incompre~ible fluid in a spherical annulus. The 
solutions to the governing equations were obtained 
by the perturbation method discussed in the previous 
section. 

If the bounding spherical surfaces were stationary, 
there would be no fluid motion and the temperature 
distribution would simply be the conduction distri- 
bution. Any rotation of the bounding spheres sets up 
a primary flow (w) around the axis of rotation. If the 
spheres do not rotate at equal rates (ii # i), the 
relative motion sets up an unbalanced centrifugal 
force field which drives the secondary flows (JI) in 
the meridian plane. Thus, if the bounding spheres are 
of unequal temperature this secondary flow pro- 
duces forced convection within the annulus, resulting 
in a temperature distribution (4) that is different than 

FIG. 2. Velocity and temperature distributions for fi = - 1, 
q = 0.5, Re = w,R&fv = 10 and Pr = 10: (a) secondary 
flow; (b) primary flow and angular velocity; (c) tempera- 
ture distribution; (d) difference between convective and 

canduction temperature distributions. 
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the pure conduction distribution. The relative magni- 
tudes of the secondary flow and forced convection 
effects depend upon the parameters involved, includ- 
ing those concerning the geometry of the flow, r] and 
ji, and those concerning the dynamics, Re and Pr. 

A typical situation is shown in Fig. 2 for the case 
when q = 0.5, ji = - 1, Rc =kO, and Pr = 10. That 
is, the inner sphere has a diameter one half that of 
the outer sphere, and the spheres are rotating at the 
same angular velocity but in opposite directions. 
Terms through order Re4 were included for this 
perturbation solution. It is seen that for Re = 10, 
inertial forces are not large. For example, the 
secondary flow in the meridian plane (Fig. 2a) is 
quite weak (maximum value of $ is approximately 
80 x lo- 5). The clockwise motion of the secondary 
flow indicates that the outer sphere is dominant as 
far as the secondary flow is concerned. The contours 
of constant angular velocity, o (Fig. 2b), are nearly 
spherical shells. Hence, the secondary flow has not 
altered the primary flow to any noticeable degree. 
Likewise, the contours of constant temperature, c 
(Fig. 2c), are nearly spherical shells indicating that 
the secondary flow has caused only slight convective 
effects. 

This effect of the secondary flow on the tempera- 
ture distribution is shown by the l-i, contours of 
Fig. 2(d). Here c, is the conduction temperature 
distribution, dependent only upon r. The difference 
between the actual and conduction distribution is 
dependent upon the magnitude of the secondary flow 
velocity (Re) and the rate of thermal diffusion (Pr). 
Consider the situation for which 7” > T1 ; that is, the 
outer sphere is hotter than the inner sphere. As 
shown in Fig. 2(a), the hot fluid near the outer sphere 
is convected toward the cooler inner sphere in the 
region near the equator, while the cool fluid near the 
inner sphere is convected toward the hotter outer 
sphere near the pole. Regions of warm and cool fluid 
then are formed in the equatorial and polar regions, 
respectively. 

For relatively small values of Re and Pr, the forced 
convection temperature distribution is not greatly 
different than the conduction solution. For this case 
with Re = 10 and Pr = 10, the maximum difference 
is approximately 2.5%. From the perturbation 
solution, it can be shown that for small values of Re 
the difference between the convection and con- 
duction temperature profile is proportional to Re’Pr. 
For small Re, the “[ -4, = 0”-line separating the 
regions of [ greater than or less than the conduction 
value is given by P2(0) = 0, that is f? = 54.7”. 

The local rate of heat transfer across the bounding 
spherical surface is dependent upon the temperature 
gradient at the surface and may be written as 

*- a$ 
--K--. 

q- a; 
This local hgat flux may be put into dimensionless 
form by d&j&g the actual heat flux by the 
conduction heat flux value, g,, which is independent 

of 8. Use of the perturbation solution given by 
equation (6) results in the following heat-transfer 
ratio 

4*(e) War -- L 
- - dc,ldr r=q,l qE 

(10) 

where r = r],l denotes the value of the ratio at the 
inner or outer sphere, respectively. This local transfer 
ratio is a function of 0 alone. The total heat transfer 
ratio, $I&,, is obtained by integrating the local heat- 
transfer ratio over the surface of the bounding 
sphere. The resulting expression can be written as 

g-=1+ 
QC ~[.=~,...R"hb,(r)],=~,~ (11) 

Here o/o, is the ratio of total heat transfer across 
the rotating spheres (forced convection) divided by 
that heat transfer for stationary spheres 
(conduction). 

For small Re the local and total heat transfer 
ratios given above reduce to the following: 

and 

a= 1+aReZPr(3cosZe-1) 4 
qe 

(12) 

g = 1 + ARe4Pr2, 
QC (13) 

where a and A are quantities dependent only upon q 
and fi. Thus, the lowest order local heat-transfer 
convective effects are of the order Re*Pr, whereas the 
total heat-transfer convection effects are of the order 
(Re2Pr)z. Thatis, when the e-dependence of the local 
heat-transfer rate is integrated to form the total heat- 
transfer rate, the lowest order Re2Pr term vanishes 
leaving the Re4Prz term as the lowest order 
correction to the total heat-transfer rate. These 
characteristics are also shoti by the K-G solution 
and discussed in the next section. Values of A(q, ji) 
are shown in Fig. 3 for two limiting cases; ji = 0 and 
co. Since A is an index of the effect of convection on 
the total heat-transfer rate, this figure points out that 
q Y 0.35 is the optimum radius ratio. Further, the 
total heat-transfer rate drops off sharply for values of 
q approaching 0 or 1. 

The Re” dependence of o/Q,- 1 shows that the 
forced convection effect for the overall heat-transfer 
rate is very small for small Reynolds number 
spherical annulus flows. That this is so is a result, in 
part, of the fact that the mechanism causing the 
forced convection is the secondary flow, which is 
relatively small for small Re. This is in contrast to a 
situation in which the primary flow is directly 
responsible for the forced convection. A heated 
sphere placed in a uniform stream of fluid is such an 
example. For this case it can be shown (Rimmer 
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FIG. 3. The dependence of the total heat-transfer rate index 
on the radius and angular velocity ratios. (-) fi = co, 

(____) /i = 0. 

[32]) that the lowest order correction to the total 
heat-transfer ratio is proportional to RePr. 

5. DISCU%$ION QF K-G SOLUT(3NS 

The K-G solution method discussed in Section 3 
allows the forced convection solution to. be obtained 
at Reynolds numbers larger than those permitted by 
the perturbation solution. For small Re, solutions 
obtained by the two methods agree to within several 
significant figures. In this section we discuss the 
solutions at larger Reynolds number8 than those 
allowed by the perturbation technique. 

A typical situation is shown in Fig. 4 for the case 
where rl = 0.5, fi = 0 (the stationary outer sphere is 
twice the diameter of the inner one), Re = 200, and 
Pr = 1. Rotation of the inner sphere produces a 
centrifugal force field that drives the counter- 
clockwise secondary flow as indicated in Fig. 4a. 
This outwardly centrifuging,~cmdary flow near the 
equator interacts with the p&nary flow producing 
lines of constant angular velocity (Fig. 4b) that are 
different than the small fle, spherical shell structure. 
The shape of the constant temperature lines is 
likewise distorted from their spherical shell con- 
duction condition as shown in Fig. 4(c). That these o 
and [ contours are very similar is not surprising 
since the distortion of each is dependent upon the 
relative amount of convection and conduction 
(thermal or momentum). For Pr = 1, the equations 

-IO4 JI 

I 
5 

IO 
20 -Q 30 

40 

(a) 
0 

0 

(b) 

5 

IO?{- 5,) 

(d) 

FIG. 4. Velocity and temperature distributions for fi = 0, q 
= 0.5, Re = w,Ri/v = 200 and Pr = 1. 
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FIG. 5. Local heat transfer ratios at the spherical surfaces for i = 0.9 = 0.5, Re = q R&b = 200 and Pr = 1 

governing the basic Aow momentum function (Q) 
and the temperature function (c) are nearly identical. 
Recall that w = a/r2 sin’@ The difference between 
the convection and conduction temperature distri- 
butions, 5 -CC, is shown in Fig. 4(d). The maximum 
difference is on the order of 150,;. Thus, for example, 
if the outer sphere were hotter than the inner sphere, 
a region of relatively hot fluid is obtained in the 
region near the poles, while a region of relatively 
cool fluid is obtained near the equator. An equal but 
oppositeeffect is obtained for the situation where the in- 
ner sphere is hotter than the outer one. (i - <,) remains 
the same but T-PC changes sign [cf. equation (411. 
‘r, is the dimensional conduction temperature distri- 
bution. For larger values of Re. the line separating 
these two regions is no longer a straight line as it was 
for the low order perturbation solution. The larger 
secondary flows produce stronger convective effects 
with more severe distortions of the temperature 
profile. 

The heat-transfer characteristics of the larger 
Reynolds number K-G solutions can be obtained in 
a manner analogous to that described in the 
previous section for the perturbation solutions. In 
particular, the local and total heat-transfer ratios can 
be written as 

4 
- 4 = _& ,.,pm(“)gi ,=,,, 1 

(14) 
C V,l . . 

and 

Q b(r) 
QC hbo(r) ,=,(,, 

where h,, is the conduction temperature function 
(from the perturbation solution). The local heat- 
transfer ratio for the flow shown in Fig. 4 and 
discussed above is shown in Fig. 5. As expected, the 
heat-transfer rate on the inner sphere (r = q) is 
maximum near the poles and minimum near the 
equator, whereas the opposite is true for the outer 
sphere. Thus, regardless of which sphere is hotter, the 
counterclockwise secondary flow causes the in- 
creased or decreased local heat-transfer rate as 
shown. 

The overall heat-transfer rate, Q/& - 1, is shown 
as a function of Reynolds number for fi = 0 in Fig. 6. 
Results from the perturbation solution, the K-G 
solution, and experiments are shown. As discussed in 

FIG. 6. Total heat-transfer ratio as a function of Reynolds 
number for @ = 0, 1 = 0.5: - perturbation solution with 
pr = 1.0: 0 K-G solution with Pr = 1.0; -- per- 
turbation solution with Pr = 0.72; q experimental results 
with negligible buoyancy and Pr = 0.72 (Maples, et al. 

[26] ). 

the previous section, for small Re the convection 
effects are of order Re4. Hence, &?, - 1 becomes 
small very rapidly as the Reynolds number is 
decreased below Re = 100 or so. The K-G solutions 
also show this type of Reynolds number dependence 
for small Re, while the dependence is not as strong 
for larger Re (see Fig. 6 for Re = 200). 

The large Reynolds number experimental results 
of Maples, et al. [26] are shown on the same figure. 
These results were obtained by heat-transfer 
measurements within a spherical annulus with a 
stationary outer sphere (fi = 0) oriented with the axis 
of rotation vertical. Hence, vertical buoyancy effects 
are present for the experiments but not for the 
theoretical results. However, for the data shown, the 
natural convection effects are very slight since the 
buoyancy parameter, Gr/Re2 (where Gr is the 
Grashof number) is on the order of 0.33. The 
experimental results are for air with Pr = 0.72 rather 
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(a) 

(b) 
(d) 

<w m” 

FIG. 7. Velocity and temperature distributions for fi = cc, 
9 = 0.5, Re = w,R~lv = 200 and Pr = 1. 
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FIG. 8. Local heat-transfer ratios at the spherical surfaces 
for $ = co, q = 0.5, Re = co2Rz/v = 200 and Pr = 1. 

0 

than Pr = 1 as calculated here. The theoretical low 
Re heat-transfer results for air are shown in the same 
figure. 

The results for TV = 0.5, fi = 00 (stationary inner 
sphere), Re = 200, and Pr = 1 are shown in Fig. I. 
As reported previously ([S], [8], .etc.), the centrifugal 
forces produce a clockwise secondary flow (Fig. 7a), 
and the angular velocity contours (Fig. 7b) show a 
typical cylindrical characteristic. That is, surfaces of 
constant o are somewhat cylindrical in character as 
opposed to their low Re spherical character. Not 
surprisingly, the constant temperature contours (Fig. 
7c) show a similar tendency toward a cylindrical 
characteristic. 

As shown in Fig. 7(d), near the poles the difference 

between the forced convection and the conduction 
temperature distribution reaches a maximum of 
slightly more than 25%. This situation is similar to 
that in Fig. 4 and only here the regions of hot and 
cool fluid are interchanged. Again, the opposite effect 
is obtained if the inner sphere is hotter. 

The local heat-transfer ratio on the bounding 
spheres is shown in Fig. 8. While the heat-transfer 
rate is not greatly different than the conduction value 
in the equatorial region (45” 6 0 < 90”), it is con- 
siderably different in the polar region, particularly on 
the outer sphere. The total heat-transfer ratio is 
shown as a function of Reynolds number in Fig. 9. 

As a final example, we consider the situation with 
r~ = 0.5, /.j = - l/3 (inner sphere rotating three times 
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Re= w2 Rz2/u 

FIG. 9. Total heat-transfer ratio as a function of Reynolds 
number for q = 0.5: (a) fi = co, Pr = 1.0, __ perturbation 
solution, 0 K-G solution; (b) p = -j, Pr = 10.0, - 

(b) 

perturbation solution, A K-G solution. 
IO 

that of the outer sphere and in the opposite 09 

direction), Re = 50, and Pr = 10. As shown in Fig. 
10(a), neither of the spheres completely dominates 
the secondary flow. Two contrarotating swirls are 5 

07 

obtained. Due to the relatively small Reynolds 83 

number, the contours of constant angular velocity 0’ 0 

(Fig. lob) are essentially spherical surfaces. On the 
other hand, the relatively large Prandtl number 
causes a considerable distortion of the temperature 
profile (Fig. 10~). Surfaces of constant [ remain quite (Cl 

spherical near the equator but are flattened con- 
siderably near the poles. Contours of constant c-c, 
are shown in Fig. 10(d). The total heat-transfer ratio 
results are included in Fig. 9. As the Reynolds 
number is increased, the deviation of the total heat- 
transfer ratio from the Re4 low Reynolds number 
dependence is clearly demonstrated for both sets of 
data shown. 

6. CONCLUSIONS 

The forced convection within a rotating spherical 
annulus has been investigated by obtaining approxi- 
mate solutions to the governing momentum and 
energy equations. The character of the velocity and 
temperature fields and the heat-transfer rates are 
strongly dependent upon the values of the various 
dimensionless parameters considered. For many 
cases the characteristics of the angular velocity and 
temperature distributions are quite similar. This is 

(d) 

FIG. 10. Velocity and temperature distributions for fi = 
-3, q = 0.5, Re = o,R:lv = 50 and Pr = 10. 
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not unexpected since these distributions represent a 
balance between convection and conduction of 
momentum and heat, respectively. The results pre- 
sented are for a radius ratio of one-half (q = 0.5). 
Similar characteristics are expected for other radius 
ratios, at least for values of q not too near zero or 
one. 

The secondary flows that drive the forced con- 
vection become vanishingly small as Re + 0. Thus, 
convective effects are quite weak for small Reynolds 
numbers, producing local heat-transfer ratios that do 
not differ considerably from the conduction value for 
small Re. This, coupled with the fact that on either 
sphere the local heat-transfer rate varies from greater 
than to less than the conduction value from the pole 
to the equator, results in an overall heat transfer rate 
that varies according to Re4Pr2 for small Re. For 
larger values of Re, this Reynolds number de- 
pendence becomes less severe. 
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CONVECTION THERMIQUE DANS DES ESPACES ANNULAIRES 
SPHERIQUES-2. ECOULEMENTS STRATIFIES 

RhmcOn considhre la convection thermique mixte stationnaire d’un fluide de Boussinesq entre deux 
sphbres concentriques. Lea sphQes sont maintenues a des temp&ratures diffkrentes et tournent autour d’un 
axe comnwn avw des vitesses angulaires di%rentes. Un champ gravitationel, radial, uniforme agit sur le 
fluide. Des solutions approchixs des &quations sont obtenues par une m&hode de Galerkin modifib pour 
les nombres de Reynolds mod+&. Les configurations d%coulement, de distribution de tem@rature et les 
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caractkistiques de transfert thermique et de couple sont presentees pour plusieurs de&s de stratification. 
On constate que I’accroissement des ‘forces de gravitt ahere les configurations d%coulement primaire et 
secondaire aussi bien que les distributions de temperature. Les valeurs de transfert thermique et du 

couple sont augment&es en consequence. 
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THERMISCHE KONVEKTION IN ROTIERENDEN KUGELFGRMIGEN 
RINGRAUMEN-I. ERZWUNGENE KONVEKTION 

Znsanunmfasstmg-Die stationtire erzwungene Konvektion in einer zwischen zwei konzentrischen 
Kugeln eingeschlossenen zlhen Fhissigkeit wird untersucht. Die Kugeln werden auf unterschiedlichen 
Temperaturen gehahen und rotieren bei unterschiedhcher Winkelgeschwindigkeit urn eine gerneinsame 
Achse. Fiir die maBgebenden Gleichungen wurden Naherungsliisungen gefunden, und zwar fur kleine 
Reynolds-Zahlen in Form einer Losung mittels Stiirungsansatzes und fiir mslDige Reynolds-Zahlen in 
Form einer modifizierten Galerkin-Losung. Fur die verschiedenen hetrachteten Fiille werden aIs 
Ergebnis das Stromlinienbild, die Temperaturverteilung und das W5rmeiihertragungsverhalten darges- 
tellt. Die theoretisch gewonnenen WIrmeiihergangzahlen fti Striimungen in einem kugelfdrmigen 
Ringraum hei kleinen und mittleren Reynolds-Zahlen und ruhender AuDenkugel werden mit friiheren 
Versuchsergebnissen fur Stromungsverhiiltnisse bei grogen Reynolds-Zahlen verglichen. Der Unterschied 

zwischen reiner Leitung, “Stokes-Striimung” und Grenzschicht-Konvektion wird gezeigt. 

TEflJlOBAIl KOHBEKUMIl B 3A30PE MENAY BPAlllAKXllMMMCFI CcbEPAMM. 
qACl-b I. BblHYXAEHHAII KOHBEKUMIl 

Amroratt~~a - PaCCMaTpHBaeTCSl CTaUUOHapHan BblHyYAeHHaR KOHBeKUHIl BR3KOii XWAKOCTH 6 

3a3Ope MeIKAy AByMR KOHUeHTpW’leCKHMH C@pahW, KOTOpble HaXOARTCIl llpH pa3JlH’lHblX Tetdllepa- 

TypaX H BpaUlaIOTCn C pa3nHSHblMH yl-n0Bblt.W CKOpOCTnMH BOKpyr Q6tuett OCH. i-,Ony’,eHbl 

I’lpH6JUWCeHHble peUJeHHR HCXOAHblX ypaBHeHHfi C flOMOlUbH) MeTOAa pel-ynSlpHblX B03MyIUeHHfi 

nnn Ma,iblx 3HasewG vHcna Petiuonbnca H nocpencTBohi brontit$nuupoeantroro bierona rant?pKHHa 

nnn cpenwix 3HaueHHii wcna Peiinonbnca. firm pacch4aTpHBaeMblx cnyqaee npmoAnTcn KapTt4Ha 

TeqeHHn. pacnpeneneune rebineparyp H xapakrepucrmoi rennoo6b4etia. Ann cnyran itenonemkbroA 
BHelAHefi C&pbl TeOpeTWleCKHe pe3ynbTaTbl IlO TeIInOO6MeHy AJlR Te’leHHtt, XapaKTepH3yKWl~XCtl 

ManblMH H CpeAHHMH 3HaWHHIMH ‘IHCna PekHOnbACa, CpaBHHBaloTCIl C paHW llOny’leHHblMH 

3KCllepHMeHTanbHblMW AaHHblMW Anll Te’feHHfi C 6onbtuwu ‘IHCnOM PetiHOJlbLlCa. nOKa3aHO pa3nHWe 

MeXCAy FlKHMaMH TellnOllpOBOAHOCTH. CTOKCOBCKOrO TeWHHII H KOHBCKUHH B llOrpaHH’lHOM CnOe. 


